Finding Zeros and Graphing Polynomials

Date _____ Per ____

Write the polynomial as a product of linear factors. A zero is provided. Find the y-intercept, end behaviors and sketch a graph.

1.
$$f(x) = -x^3 + 3x^2 + 10x - 24$$
; $x = -3$

2.
$$g(x) = x^4 + 2x^3 - 13x^2 - 14x + 24$$
; $x = 1$ and 3

3. $r(x) = 2x^4 - 17x^3 + 11x^2 + 165x - 225$; x = 5 is a double root

4. $h(x) = -x^4 - 13x^3 - 60x^2 - 112x - 64$; x = -4 has a multiplicity of 3

5. $p(x) = x^4 - 29x^2 + 100$; $x^2 - 4$ is a solution

6. $f(x) = x^5 - 10x^4 - 20x^3 + 360x^2 - 3456$; x = 6 has a multiplicy of 3

